3D tensor factorization approach to single-frame model-free blind-image deconvolution.
نویسنده
چکیده
By applying a bank of 2D Gabor filters to a blurred image, single-frame blind-image deconvolution (SF BID) is formulated as a 3D tensor factorization (TF) problem, with the key contribution that neither origin nor size of the spatially invariant blurring kernel is required to be known or estimated. Mixing matrix, the original image, and its spatial derivatives are identified from the factors in the Tucker3 model of the multichannel version of the blurred image. Previous approaches to 2D Gabor-filter-bank-based SF BID relied on 2D representation of the multichannel version of the blurred image and matrix factorization methods such as nonnegative matrix factorization (NMF) and independent component analysis (ICA). Unlike matrix factorization-based methods 3D TF preserves local structure in the image. Moreover, 3D TF based on the PARAFAC model is unique up to permutation and scales under very mild conditions. To achieve this, NMF and ICA respectively require enforcement of sparseness and statistical independence constraints on the original image and its spatial derivatives. These constraints are generally not satisfied. The 3D TF-based SF BID method is demonstrated on an experimental defocused red-green-blue image.
منابع مشابه
Tensor factorization for model-free space-variant blind deconvolution of the single- and multi-frame multi-spectral image.
The higher order orthogonal iteration (HOOI) is used for a single-frame and multi-frame space-variant blind deconvolution (BD) performed by factorization of the tensor of blurred multi-spectral image (MSI). This is achieved by conversion of BD into blind source separation (BSS), whereupon sources represent the original image and its spatial derivatives. The HOOI-based factorization enables an e...
متن کاملNon-negative Matrix Factorization Approach to Blind Image Deconvolution
A novel approach to single frame multichannel blind image deconvolution is formulated recently as non-negative matrix factorization (NMF) problem with sparseness constraint imposed on the unknown mixing vector. Unlike most of the blind image deconvolution algorithms, the NMF approach requires no a priori knowledge about the blurring kernel and original image. The experimental performance evalua...
متن کاملSingle-frame multichannel blind deconvolution by nonnegative matrix factorization with sparseness constraints.
Single-frame multichannel blind deconvolution is formulated by applying a bank of Gabor filters to a blurred image. The key observation is that spatially oriented Gabor filters produce sparse images and that a multichannel version of the observed image can be represented as a product of an unknown nonnegative sparse mixing vector and an unknown nonnegative source image. Therefore a blind-deconv...
متن کاملPSO-Optimized Blind Image Deconvolution for Improved Detectability in Poor Visual Conditions
Abstract: Image restoration is a critical step in many vision applications. Due to the poor quality of Passive Millimeter Wave (PMMW) images, especially in marine and underwater environment, developing strong algorithms for the restoration of these images is of primary importance. In addition, little information about image degradation process, which is referred to as Point Spread Function (PSF...
متن کاملNonlinear Band Expansion and 3D Nonnegative Tensor Factorization for Blind Decomposition of Magnetic Resonance Image of the Brain
αand β-divergence based nonnegative tensor factorization (NTF) is combined with nonlinear band expansion (NBE) for blind decomposition of the magnetic resonance image (MRI) of the brain. Concentrations and 3D tensor of spatial distributions of brain substances are identified from the Tucker3 model of the 3D MRI tensor. NBE enables to account for the presence of more brain substances than number...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Optics letters
دوره 34 18 شماره
صفحات -
تاریخ انتشار 2009